
Technical Report for BPHO 2023 Entry 

 
Alex Arnold, Thomas Davey 

 

1 

 

Abstract 

This report details the technical considerations and 

implementations that were involved in the development of 

our website submission for the British Physics Olympiad 

Computational Challenge 2023, with emphasis on 

development of models and compatibility considerations. 

Introduction 

Our aims 

Due to the relative simplicity of the 7 tasks prescribed to us, 

we elected to dedicate most of our development time 

towards the suggested extension tasks and other models we 

felt were a natural fit for such a project. One notable 

omission is the suggested task of encoding a smartphone 

app. We felt that a website built with considerations for 

mobile devices would be more appropriate due to the 

difficulties of distribution for a smartphone app and its litany 

of cross-compatibility issues. 

Languages used in development 

The majority of our models were written in Python 3.10 

with the exception of the System Simulator which was 

written in JavaScript with the Three.js library and tested 

using version 1.5. For all the code written for the models, an 

emphasis was placed on ensuring any data could be used, 

not just that which was required for completion of the task. 

The website was written in HTML and CSS in conjunction 

with a variety of open-source libraries, which were chosen 

for authenticity of model representation at the cost of a small 

degradation in responsiveness. 

Deployment 

Our website was deployed and hosted through GitHub Pages 

as it offers a free static site hosting service. We also 

purchased and setup the custom domain name bpho-

orbits.com to allow our website to be served from a domain 

other than the obtuse default domain. 

1  Required Tasks 

We do not seek to seek to explain or derive any of the 

methods used in the 7 required tasks. Any form of 

explanation or derivation is deemed unnecessary as prior 

knowledge of the methods presented in (French, 2023) is 

assumed. Instead, we merely wish to explain our specific 

implementation of these methods such that they can be 

presented to the user graphically. 

 

1.1  Python Libraries 

We found that the choice of programming language to 

develop the models in was obvious due to us both being 

comfortable writing code in Python.  Therefore, in order to 

display the results of the computations involved in the 

models, Matplotlib was the clear choice of library to use due 

to its convenient tools for generating both static and 

animated visualisations. 

Other libraries used are the Python standard library math 

and the NumPy library due to the necessity of non-basic 

mathematical functions. 

 1.2 Planetary Data 

In order to prevent bloating our code by repeating constants 

across every model, we decided to centralise all of our 

constants within a single file that would be imported into 

each model. This was trivial and done through the use of 

dictionaries: 1 containing every planet in our data set and 

individual dictionaries for each planetary system. Within 

each dictionary, the planets were numbered and their 

constants sorted into 1 dimensional arrays. This significantly 

reduced development time as it allowed for exoplanets to 

simply be added to the file and work immediately with all 

our pre-existing models. All planetary data was sourced 

from the NASA exoplanet database (NASA, 2021). 

1.3 Animation 

Tasks 3 and 4 respectively posed the unique challenge of 

demanding an animated visualisation. Using the method 

suggested in the briefing, orbital angle would increment 

such that 𝜃𝑛+1 =
2𝜋

𝑃
(𝑡𝑛 + ∆𝑡). Unfortunately, this produced 

unsatisfactory results as the angular velocity of the planets 

would remain constant, which is certainly not what would be 

observed in nature. Therefore, to solve this problem the code 

written for task 5 was adapted into a function that with an 

input of orbital time, would output orbital angle (see 

appendix A for code). After implementing this function, the 

expected “slingshot” around the sun was observed. See 

appendix B for example animation code. 

1.4  Task 5 

Task 5 required evaluating the following equation using 

Simpson’s numeric method:  

𝑡 = 𝑃(1 − 𝜀2)
3
2

1

2𝜋
∫

𝑑𝜃

(1 − 𝜀 cos 𝜃)2

𝜃

𝜃0

 

Simpson’s numeric method (see appendix C for example 

code):  

https://bpho-orbits.com/
https://bpho-orbits.com/
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∫ 𝑓(𝑥) ≈
1

3

𝑏

𝑎

ℎ{𝑦0 + 4𝑦1 + 2𝑦2 + 4𝑦3 + 2𝑦4 + ⋯ + 4𝑦𝑁

+ 𝑦𝑁} 

Given 

ℎ =  
𝑏 − 𝑎

𝑁
 

As suggested by Dr French in the briefing, we incremented 

time using this method to determine orbital angle at different 

orbital times. However, we encountered the issue that at a 

time increment of 0.1 years where N = 1000, an adequate 

graph was generated for Pluto despite Mercury generating a 

graph with a mere 2 points plotted.  When the time 

increment was reduced to 0.001 years an adequate graph for 

Mercury was generated however the graph for Pluto took an 

unacceptable amount of time to generate. Our solution to 

this was to dynamically assign time increments per planet 

based on predefined values stored in our planetary data file. 

After implementing this solution, the quality for all planets 

remains indistinguishable whilst the time to plot also 

remains reasonably responsive. 

 1.5 Further Considerations 

In task 7, we noted that the plot for when certain planets are 

assumed to be the centre of their respective system was 

cluttered to the point of difficult interpretation. To solve this 

problem, we devised a method to determine the total amount 

of orbits each planet in the system should undergo, which is 

as follows: 

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑟𝑏𝑖𝑡𝑠 =  −13 log( 𝑎𝑛) + 31 

Where an is the semi-major axis of the furthest planet, the 

result is rounded to the nearest integer. This significantly 

reduced the visual clutter and allowed for orbital paths to be 

observable for all planets. 

2 Non-required Models 

This section details the methods and implementations of the 

models programmed that were not suggested by the 

competition briefing. We do not seek to derive any of the 

methods used, as that is considered beyond the scope of this 

report.  We decided on these 4 models as we felt that they 

produced interesting results that related to the nature of the 

challenge. 

 2.1 System Simulator 

Our System Simulator model provides a more interactive 

and immersive way of viewing planetary systems and their 

orbits. It was built from the ground up with ThreeJS, a 

JavaScript library that allows 3D rendering in browser, 

which python is unable to achieve.  All planetary 

information used within this model was sourced from the 

Nasa exoplanet database (NASA, 2021). 

 

Within this model, the orbits are rendered using a similar 

method to that in Task 4. Orbital angle is continuously 

iterated to determine a sufficient number of positions along 

the orbital path, which are connected to form a spline and 

rendered using ThreeJS.  Animation of planetary movement 

demanded a rewrite of the function created in task 5 for 

JavaScript, where the current model runtime is inputted and 

orbital angle returned. Current orbital angle is divided by 2π 

to determine the proportion of the spline that the planet has 

travelled along and current position of the planet on spline is 

returned. This ensures that planetary position is correct 

according to Kepler’s Second Law. 

Foremost, a full 3D render allows for each planet to have a 

unique texture, unlike the monochromatic points of task 4. 

Each texture consists of a 4k image complete with normal 

map, in order to cast convincing shadows on its terrain. 

Textures for the exoplanets were generated using Textures 

for Planets (Planets, n.d.) according to their identified planet 

types. Textures for planets within the Solar System were 

sourced from Solar system scope (Solar, n.d.). The same 

methodology was used for cloud textures. Finally, the 6 

images that form the skybox were sourced from Skybox 

generator (Terrell, n.d.). With the addition of textures, the 

rotation of planets is observable, as well as the tilt on their 

axis. These features were simple to include using ThreeJS’s 

extensive library of 3D tools in conjunction with recorded 

values for rotational period and axis tilt.  

Mobile compatibility was a major consideration during the 

development of this model. The user interface is primarily 

constructed using Bootstrap, a library heavily utilised 

throughout the website, that allows for dynamic UI scaling 

and a visual style consistent with the remainder of the 

website. Furthermore, the inclusion of ray casting within this 

model allows the user to tap on a planet in order to lock onto 

it, an input method that feels extremely natural to perform 

on mobile. 

 2.2 Binary Systems 

Our binary systems model is a form of the restricted three 

body problem inspired by the Dynamic simulations of 

Gravity webinar from Dr French. The simulation consists of 

2 stars and 1 planet for which the mass is assumed to be 

negligible. The initial separations from the stars’ centre of 

mass are calculated as follows: 

𝑟1 = 𝑎
𝑀1

𝑀1 + 𝑀2
 

𝑟2 = 𝑎 − 𝑟1 

Time is then incremented such that ∆𝑡 = 0.001 𝑦𝑒𝑎𝑟𝑠  

where at each increment, acceleration on each body is 

calculated using Newton’s law of gravitation, which will not 

be shown here as it is considered common knowledge. The 

position of each object is then calculated using the verlet 

method which is shown below: 

𝑎𝑛 = 𝑓(𝑡𝑛, 𝑟𝑛 , 𝑣𝑛) 

https://threejs.org/
https://getbootstrap.com/
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𝑡𝑛+1 =  𝑡𝑛 +  ∆𝑡 

𝑟𝑛+1 =  𝑟𝑛  +  𝑣𝑛∆𝑡 +  
1

2
𝑎𝑛∆𝑡2 

𝑉 = 𝑣𝑛 + 𝑎𝑛∆𝑡 

𝐴 = 𝑓(𝑡𝑛+1, 𝑟𝑛+1, 𝑉) 

𝑣𝑛+1 =  𝑣𝑛 + 
1

2
(𝑎𝑛 + 𝐴)∆𝑡 

The orbital paths of each object are stored in their respective 

coordinate arrays and then outputted to the user as either a 

complete static plot or an animated model. Variables which 

are user changeable include the masses of the 2 stars, their 

mutual semi-major axis, the initial velocity of the stars, 

which star the planet orbits and its initial separation from the 

star. Due to the immense number of points being plotted, 

performance for the animated model suffers. One solution to 

this would be to simply increase ∆𝑡, however in order to 

ensure accuracy of the model, animation was simply limited 

to a maximum of 30 frames per second to avoid frame 

pacing irregularities. 

 2.3 Goldilocks Zones 

Our goldilocks zone model computes and plots the region 

within a planetary system where temperature due to light 

intensity of a star allows for water to remain a liquid. This is 

done by calculating the upper and lower bounds of an 

annulus using the following formula: 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑠𝑡𝑎𝑟 =  √
𝐿𝑢𝑚𝑖𝑛𝑜𝑠𝑖𝑡𝑦 𝑜𝑓 𝑠𝑡𝑎𝑟

𝐿𝑢𝑚𝑖𝑛𝑜𝑠𝑖𝑡𝑦 𝑜𝑓 𝑆𝑜𝑙
 

The lower bound of the annulus is 95% of the distance and 

the upper bound is 137% of the distance. This annulus is 

overlayed on top of the orbital model from task 2 to 

represent the respective system’s goldilocks zone. This 

model is represented in 2 dimensions rather than 3, as in 3 

dimensions a spherical shell is used to represent the 

goldilocks zone which makes the zone harder to perceive. 

Therefore, a cross-section is taken, represented by the 

annulus, and thus the model is represented in 2 dimensions. 

 2.4 Lagrange Points 

Our Lagrange point model uses a rotating reference frame to 

model the movement of a test mass relative to two bodies. It 

also plots the positions of the Lagrange points, L1 through 5. 

The aim of this model was to illustrate the motion of a test 

mass in and near Lagrange points. 

The process the model uses is heavily based upon newtons 

gravitational equation and Verlet integration. The barycentre 

of the two bodies is the axis of rotation of the reference 

frame, and the two bodies orbit in a circle around it. The 

barycentre is calculated as such: 

𝑟1 =
𝑅

1 +
𝑚1

𝑚2

 

where 𝑟1 is the distance of mass 1 to the Barycenter, and 𝑅 is 

the distance between the two masses. 

 A fixed timestep with a constant acceleration is used as 

according to the Verlet integration method. In order to 

mitigate inaccuracies created from using a fixed timestep, as 

few as possible calculations are carried out each step. Thus, 

the test mass’s movement is simulated using Newton’s Law 

of gravitation each step. This means that we cannot append 

the various pseudo-forces created from being inside a 

rotating reference frame, such as the Centrifugal force and 

the Coriolis force. Therefore, it is easiest to in fact calculate 

in a fixed reference frame, but display it as if it were a 

rotating reference frame. In order to rotate the fixed 

reference frame such that the two bodies appear stationary, a 

rotation matrix is applied to all three objects, rotating 

clockwise the angle that the small body has moved 

anticlockwise. This happens each timestep simply for 

display purposes, the actual positions of the bodies are not 

altered. To plot the positions of the L points, the following 

formulas were used (Cornish, n.d.): 

𝐿1: (𝑅 [1 − (
𝛼

3
)

1
3

] , 0) 

𝐿2: (𝑅 [1 + (
𝛼

3
)

1
3

] , 0) 

𝐿3: (−𝑅 [1 + (
5

12
𝛼)] , 0) 

𝐿4: (
𝑅

2
 (

𝑀1 − 𝑀2

𝑀1 + 𝑀2

) ,
√3

2
𝑅) 

𝐿5: (
𝑅

2
 (

𝑀1 − 𝑀2

𝑀1 + 𝑀2

) , − 
√3

2
𝑅) 

These coordinates are relative to the rotating reference 

frame. As such, they can simply be drawn to the graph at 

that position without any rotation. However, for the 

animation (not included on the website), they are rotated 

around at the same rate of the smaller body. The path of the 

test mass can be drawn both in the fixed and rotating 

reference frame. 

The example included on the website uses the masses of the 

Sun and Jupiter, as they are the closest in masses of any 

planet within the solar system. This means the effective 

range of their L4 and L5 points are the largest, and easiest to 

form a stable orbit in. This can be observed by setting the 

displacement from L4 or L5 to around 1e10 meters. A stable 

“bean” shaped orbit is formed, similar in shape to that seen 

on the contour plot. 

All the images on the Lagrange Points page on the website 

were generated using custom written python scripts. The 3D 
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plots use the following formulas for gravitational potential 

and rotational potential, which combine to create effective 

potential: 

Gravitational Potential: 

𝑈𝐺𝑟𝑎𝑣𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 = −
(1 − 𝛼)

𝑟1

−
𝛼

𝑟2

 

Rotational Potential: 

𝑈𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 = −
1

2
(𝑥2 + 𝑦2) 

Effective Potential: 

𝑈 = 𝑈𝐺𝑟𝑎𝑣𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 +  𝑈𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙  

 

This is then plotted as a 3D surface so it is easy to visualise, 

as masses will travel down effective potential much like 

falling down a hill. It was trivial to convert this to a contour 

plot using matplotlib’s inbuilt functions, which is how the 

contour image on the website was generated. 

3 The Website 

 3.1 Python Integration 

Upon considering how best to implement our models into 

the website, we kept in mind our reasoning for choosing to 

encode our project as a website. This meant that in order to 

match the features of an app, integrating python code into 

the website was essential. Therefore, our solution was to 

utilise the PyScript web framework, which utilises the 

Pyodide python distribution and web assembly to allow 

python code run within html. PyScript allowed us to adapt 

our models to return an image or animation that could be 

displayed on the website when the code is run.  

Unfortunately, this has a few limitations, the first of which 

being the loading time upon running a model for Pyodide to 

initiate, which is impossible to eliminate as it is a limitation 

of the framework. This was deemed acceptable as past the 

initial loading times, static models remain responsive. The 

second limitation of PyScript is the framework’s inability to 

display animations during their runtime. This resulted in 

unacceptable delays whilst waiting for the entire animation 

to complete. This meant that, out of necessity, for animated 

tasks such as tasks 3 and 4, .mp4 files are instead displayed 

to ensure responsiveness. 

To ensure visual consistency, all video files were saved in-

code using the relevant function within matplotlib. The 

writer ffmpeg was used, and all animations were recorded at 

200 dpi at 30 frames per second using the H.264 video 

encoder. 

 

 

3.2 Other Libraries 

Aside from PyScript, the website was written using a variety 

of other libraries. The foremost library used was Bootstrap. 

Bootstrap is an open-source CSS framework that is used 

heavily throughout the website. This eliminated the need for 

extensive CSS to be written and allowed for the website to 

make use of its various features such as navigation bar, card, 

carousel, button and drop-down menu templates for a more 

mobile focused website.  Another library used throughout 

the website is Font Awesome. Font Awesome is a font and 

icon pack that we predominantly used to make navigating 

the website more convenient through the use of arrows on 

buttons to switch between the various models. The final 

library we used is MathJax, which was used to display 

mathematics within text to explain how each task works 

through the use of TeX. 

 3.3 Design Considerations 

During development of the website, we kept in mind a 

couple of key considerations. The primary consideration was 

that the website was intended to be compatible with mobile 

devices. All pages are designed with a “card” design such 

that all important information on the page is contained 

within blocks in a central column. These blocks rescale 

based on the display the website is being viewed on, 

specifically how many pixels form the horizontal dimension 

of the display. The navigation bar that persists at the top of 

the display also changes when on mobile devices. When the 

website is viewed on mobile, the navigation bar becomes a 

drop-down menu with all of the same options presented to 

the user. Furthermore, equations displayed on website scale 

in size depending on whether or not the website is viewed 

on mobile or desktop in order to ensure they fit within the 

screen. Thus, all text on the website is deemed readable on 

both mobile and desktop clients. 

On all pages that display models, a carousel of images is 

displayed to present to the user examples of the results of 

the models. This was deemed necessary in small number of 

cases where a device may be incapable of running the 

models within the browser. Furthermore, all videos hosted 

on the website are in the .mp4 file format to allow users to 

pause or control the playback speed of the video. Finally, 

both this report and a spreadsheet of the exoplanet data are 

made easily accessible within the navigation bar. Each is 

embedded within their own page, the paper using html 

object tags and exoplanet data through the Microsoft live 

embed service. They are both also easily downloadable. 
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A Orbital Angle Function 

The following function is used extensively throughout the 

project in order to accurately determine the orbital angle of a 

planet given an orbital time. The function f defines the 

equation to be passed into the integration function (see 

appendix C). 

def get_angle(planet, t): 

    ecc = float(planet[2]) # eccentricity 

    p = float(planet[6]) # orbital time 

    # defines interpolated function to integrate 

    def f(x):            

        return (2*math.pi/p)*(1+ecc*math.cos(x))**-2    

    # generates coordinate arrays for eccentric orbits 

    scale_factor = t/p 

    subtract_amount = p * math.floor(scale_factor) 

    scaled_t = t - subtract_amount 

    N = (scaled_t/p) 

    b = 2*math.pi*N 

    result = ((integration(f, b, n)) * (p*((1-       

ecc**2))**(3/2)*(1/(2*math.pi)))) 

 

    return result 

  

B Animation 

The following is an example animation system, from task 4. 

It is split into 2 functions, animation_init and 

animation_func.  The former initialises the animation such 

that the starting points are the first values in the coordinate 

arrays. The latter is passed into matplotlibs animation 

function to iterate through all values of i.  The rest of the 

code determines the largest orbital period and creates a list 

of planets to be passed into matplotlib’s animation function. 

def animation_init(): 

    # Creates the animation scene 

    output = [] 

    for planet in planet_list: 

        planet.point.set_data_3d([planet.xArray[0]], 

[planet.yArray[0]], [planet.zArray[0]]) 

        output.append(planet.point) 

    return output 

def animate_func(i): 

    # Called every frame (i) to update planet positions 

    output = [] 

    for planet in planet_list: 

        planet.point.set_data_3d([planet.xArray[i]], 

[planet.yArray[i]], [planet.zArray[i]]) 

        output.append(planet.point) 

    return output 

 

# Input planet system here 

planet_system_name = "Outer Solar" 

planet_system = Pd.system_list[planet_system_name] 

planet_list = [] 

 

# Get the largest orbital period 

max_period = 0 

for planet in planet_system: 

    planet = planet_system[planet] 

    if float(planet[6]) > max_period: 

        max_period = float(planet[6]) 

 

# Loop through planets and create a list of them 

for count, planet in enumerate(planet_system): 

    plan_class = Planet(planet_system[planet], count, ax, 

max_period) 

    planet_list.append(plan_class) 

 

# Start animation 

anim = FuncAnimation(fig, animate_func, 

init_func=animation_init, frames=len(planet_list[0].xArray), 

interval=33.3, blit=False, repeat=False) 

 

 

C Simpsons numeric integration 

The following is the code used to perform Simpson’s 

numerical integration method. It is used extensively 

throughout the project to integrate the equation used in the 

orbital angle function. 

 # function, upper limit, number of subintervals 

    def integration(f, b, n): 

      h = (b ) / n 

      s = f(b) 

      for i in range(1, n, 2): 

        s += 4 * f(i * h) 

      for i in range(2, n-1, 2): 

        s += 2 * f(i * h) 

      return s * h / 3 

    # determines number of subintervals 

    n = 200 


