
Technical Report for BPHO 2023 Entry

Alex Arnold, Thomas Davey

1

Abstract

This report details the technical considerations and

implementations that were involved in the development of

our website submission for the British Physics Olympiad

Computational Challenge 2023, with emphasis on

development of models and compatibility considerations.

Introduction

Our aims

Due to the relative simplicity of the 7 tasks prescribed to us,

we elected to dedicate most of our development time

towards the suggested extension tasks and other models we

felt were a natural fit for such a project. One notable

omission is the suggested task of encoding a smartphone

app. We felt that a website built with considerations for

mobile devices would be more appropriate due to the

difficulties of distribution for a smartphone app and its litany

of cross-compatibility issues.

Languages used in development

The majority of our models were written in Python 3.10

with the exception of the System Simulator which was

written in JavaScript with the Three.js library and tested

using version 1.5. For all the code written for the models, an

emphasis was placed on ensuring any data could be used,

not just that which was required for completion of the task.

The website was written in HTML and CSS in conjunction

with a variety of open-source libraries, which were chosen

for authenticity of model representation at the cost of a small

degradation in responsiveness.

Deployment

Our website was deployed and hosted through GitHub Pages

as it offers a free static site hosting service. We also

purchased and setup the custom domain name bpho-

orbits.com to allow our website to be served from a domain

other than the obtuse default domain.

1 Required Tasks

We do not seek to seek to explain or derive any of the

methods used in the 7 required tasks. Any form of

explanation or derivation is deemed unnecessary as prior

knowledge of the methods presented in (French, 2023) is

assumed. Instead, we merely wish to explain our specific

implementation of these methods such that they can be

presented to the user graphically.

1.1 Python Libraries

We found that the choice of programming language to

develop the models in was obvious due to us both being

comfortable writing code in Python. Therefore, in order to

display the results of the computations involved in the

models, Matplotlib was the clear choice of library to use due

to its convenient tools for generating both static and

animated visualisations.

Other libraries used are the Python standard library math

and the NumPy library due to the necessity of non-basic

mathematical functions.

 1.2 Planetary Data

In order to prevent bloating our code by repeating constants

across every model, we decided to centralise all of our

constants within a single file that would be imported into

each model. This was trivial and done through the use of

dictionaries: 1 containing every planet in our data set and

individual dictionaries for each planetary system. Within

each dictionary, the planets were numbered and their

constants sorted into 1 dimensional arrays. This significantly

reduced development time as it allowed for exoplanets to

simply be added to the file and work immediately with all

our pre-existing models. All planetary data was sourced

from the NASA exoplanet database (NASA, 2021).

1.3 Animation

Tasks 3 and 4 respectively posed the unique challenge of

demanding an animated visualisation. Using the method

suggested in the briefing, orbital angle would increment

such that 𝜃𝑛+1 =
2𝜋

𝑃
(𝑡𝑛 + ∆𝑡). Unfortunately, this produced

unsatisfactory results as the angular velocity of the planets

would remain constant, which is certainly not what would be

observed in nature. Therefore, to solve this problem the code

written for task 5 was adapted into a function that with an

input of orbital time, would output orbital angle (see

appendix A for code). After implementing this function, the

expected “slingshot” around the sun was observed. See

appendix B for example animation code.

1.4 Task 5

Task 5 required evaluating the following equation using

Simpson’s numeric method:

𝑡 = 𝑃(1 − 𝜀2)
3
2

1

2𝜋
∫

𝑑𝜃

(1 − 𝜀 cos 𝜃)2

𝜃

𝜃0

Simpson’s numeric method (see appendix C for example

code):

https://bpho-orbits.com/
https://bpho-orbits.com/

2

∫ 𝑓(𝑥) ≈
1

3

𝑏

𝑎

ℎ{𝑦0 + 4𝑦1 + 2𝑦2 + 4𝑦3 + 2𝑦4 + ⋯ + 4𝑦𝑁

+ 𝑦𝑁}

Given

ℎ =
𝑏 − 𝑎

𝑁

As suggested by Dr French in the briefing, we incremented

time using this method to determine orbital angle at different

orbital times. However, we encountered the issue that at a

time increment of 0.1 years where N = 1000, an adequate

graph was generated for Pluto despite Mercury generating a

graph with a mere 2 points plotted. When the time

increment was reduced to 0.001 years an adequate graph for

Mercury was generated however the graph for Pluto took an

unacceptable amount of time to generate. Our solution to

this was to dynamically assign time increments per planet

based on predefined values stored in our planetary data file.

After implementing this solution, the quality for all planets

remains indistinguishable whilst the time to plot also

remains reasonably responsive.

 1.5 Further Considerations

In task 7, we noted that the plot for when certain planets are

assumed to be the centre of their respective system was

cluttered to the point of difficult interpretation. To solve this

problem, we devised a method to determine the total amount

of orbits each planet in the system should undergo, which is

as follows:

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑟𝑏𝑖𝑡𝑠 = −13 log(𝑎𝑛) + 31

Where an is the semi-major axis of the furthest planet, the

result is rounded to the nearest integer. This significantly

reduced the visual clutter and allowed for orbital paths to be

observable for all planets.

2 Non-required Models

This section details the methods and implementations of the

models programmed that were not suggested by the

competition briefing. We do not seek to derive any of the

methods used, as that is considered beyond the scope of this

report. We decided on these 4 models as we felt that they

produced interesting results that related to the nature of the

challenge.

 2.1 System Simulator

Our System Simulator model provides a more interactive

and immersive way of viewing planetary systems and their

orbits. It was built from the ground up with ThreeJS, a

JavaScript library that allows 3D rendering in browser,

which python is unable to achieve. All planetary

information used within this model was sourced from the

Nasa exoplanet database (NASA, 2021).

Within this model, the orbits are rendered using a similar

method to that in Task 4. Orbital angle is continuously

iterated to determine a sufficient number of positions along

the orbital path, which are connected to form a spline and

rendered using ThreeJS. Animation of planetary movement

demanded a rewrite of the function created in task 5 for

JavaScript, where the current model runtime is inputted and

orbital angle returned. Current orbital angle is divided by 2π

to determine the proportion of the spline that the planet has

travelled along and current position of the planet on spline is

returned. This ensures that planetary position is correct

according to Kepler’s Second Law.

Foremost, a full 3D render allows for each planet to have a

unique texture, unlike the monochromatic points of task 4.

Each texture consists of a 4k image complete with normal

map, in order to cast convincing shadows on its terrain.

Textures for the exoplanets were generated using Textures

for Planets (Planets, n.d.) according to their identified planet

types. Textures for planets within the Solar System were

sourced from Solar system scope (Solar, n.d.). The same

methodology was used for cloud textures. Finally, the 6

images that form the skybox were sourced from Skybox

generator (Terrell, n.d.). With the addition of textures, the

rotation of planets is observable, as well as the tilt on their

axis. These features were simple to include using ThreeJS’s

extensive library of 3D tools in conjunction with recorded

values for rotational period and axis tilt.

Mobile compatibility was a major consideration during the

development of this model. The user interface is primarily

constructed using Bootstrap, a library heavily utilised

throughout the website, that allows for dynamic UI scaling

and a visual style consistent with the remainder of the

website. Furthermore, the inclusion of ray casting within this

model allows the user to tap on a planet in order to lock onto

it, an input method that feels extremely natural to perform

on mobile.

 2.2 Binary Systems

Our binary systems model is a form of the restricted three

body problem inspired by the Dynamic simulations of

Gravity webinar from Dr French. The simulation consists of

2 stars and 1 planet for which the mass is assumed to be

negligible. The initial separations from the stars’ centre of

mass are calculated as follows:

𝑟1 = 𝑎
𝑀1

𝑀1 + 𝑀2

𝑟2 = 𝑎 − 𝑟1

Time is then incremented such that ∆𝑡 = 0.001 𝑦𝑒𝑎𝑟𝑠

where at each increment, acceleration on each body is

calculated using Newton’s law of gravitation, which will not

be shown here as it is considered common knowledge. The

position of each object is then calculated using the verlet

method which is shown below:

𝑎𝑛 = 𝑓(𝑡𝑛, 𝑟𝑛 , 𝑣𝑛)

https://threejs.org/
https://getbootstrap.com/

3

𝑡𝑛+1 = 𝑡𝑛 + ∆𝑡

𝑟𝑛+1 = 𝑟𝑛 + 𝑣𝑛∆𝑡 +
1

2
𝑎𝑛∆𝑡2

𝑉 = 𝑣𝑛 + 𝑎𝑛∆𝑡

𝐴 = 𝑓(𝑡𝑛+1, 𝑟𝑛+1, 𝑉)

𝑣𝑛+1 = 𝑣𝑛 +
1

2
(𝑎𝑛 + 𝐴)∆𝑡

The orbital paths of each object are stored in their respective

coordinate arrays and then outputted to the user as either a

complete static plot or an animated model. Variables which

are user changeable include the masses of the 2 stars, their

mutual semi-major axis, the initial velocity of the stars,

which star the planet orbits and its initial separation from the

star. Due to the immense number of points being plotted,

performance for the animated model suffers. One solution to

this would be to simply increase ∆𝑡, however in order to

ensure accuracy of the model, animation was simply limited

to a maximum of 30 frames per second to avoid frame

pacing irregularities.

 2.3 Goldilocks Zones

Our goldilocks zone model computes and plots the region

within a planetary system where temperature due to light

intensity of a star allows for water to remain a liquid. This is

done by calculating the upper and lower bounds of an

annulus using the following formula:

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑠𝑡𝑎𝑟 = √
𝐿𝑢𝑚𝑖𝑛𝑜𝑠𝑖𝑡𝑦 𝑜𝑓 𝑠𝑡𝑎𝑟

𝐿𝑢𝑚𝑖𝑛𝑜𝑠𝑖𝑡𝑦 𝑜𝑓 𝑆𝑜𝑙

The lower bound of the annulus is 95% of the distance and

the upper bound is 137% of the distance. This annulus is

overlayed on top of the orbital model from task 2 to

represent the respective system’s goldilocks zone. This

model is represented in 2 dimensions rather than 3, as in 3

dimensions a spherical shell is used to represent the

goldilocks zone which makes the zone harder to perceive.

Therefore, a cross-section is taken, represented by the

annulus, and thus the model is represented in 2 dimensions.

 2.4 Lagrange Points

Our Lagrange point model uses a rotating reference frame to

model the movement of a test mass relative to two bodies. It

also plots the positions of the Lagrange points, L1 through 5.

The aim of this model was to illustrate the motion of a test

mass in and near Lagrange points.

The process the model uses is heavily based upon newtons

gravitational equation and Verlet integration. The barycentre

of the two bodies is the axis of rotation of the reference

frame, and the two bodies orbit in a circle around it. The

barycentre is calculated as such:

𝑟1 =
𝑅

1 +
𝑚1

𝑚2

where 𝑟1 is the distance of mass 1 to the Barycenter, and 𝑅 is

the distance between the two masses.

 A fixed timestep with a constant acceleration is used as

according to the Verlet integration method. In order to

mitigate inaccuracies created from using a fixed timestep, as

few as possible calculations are carried out each step. Thus,

the test mass’s movement is simulated using Newton’s Law

of gravitation each step. This means that we cannot append

the various pseudo-forces created from being inside a

rotating reference frame, such as the Centrifugal force and

the Coriolis force. Therefore, it is easiest to in fact calculate

in a fixed reference frame, but display it as if it were a

rotating reference frame. In order to rotate the fixed

reference frame such that the two bodies appear stationary, a

rotation matrix is applied to all three objects, rotating

clockwise the angle that the small body has moved

anticlockwise. This happens each timestep simply for

display purposes, the actual positions of the bodies are not

altered. To plot the positions of the L points, the following

formulas were used (Cornish, n.d.):

𝐿1: (𝑅 [1 − (
𝛼

3
)

1
3

] , 0)

𝐿2: (𝑅 [1 + (
𝛼

3
)

1
3

] , 0)

𝐿3: (−𝑅 [1 + (
5

12
𝛼)] , 0)

𝐿4: (
𝑅

2
 (

𝑀1 − 𝑀2

𝑀1 + 𝑀2

) ,
√3

2
𝑅)

𝐿5: (
𝑅

2
 (

𝑀1 − 𝑀2

𝑀1 + 𝑀2

) , −
√3

2
𝑅)

These coordinates are relative to the rotating reference

frame. As such, they can simply be drawn to the graph at

that position without any rotation. However, for the

animation (not included on the website), they are rotated

around at the same rate of the smaller body. The path of the

test mass can be drawn both in the fixed and rotating

reference frame.

The example included on the website uses the masses of the

Sun and Jupiter, as they are the closest in masses of any

planet within the solar system. This means the effective

range of their L4 and L5 points are the largest, and easiest to

form a stable orbit in. This can be observed by setting the

displacement from L4 or L5 to around 1e10 meters. A stable

“bean” shaped orbit is formed, similar in shape to that seen

on the contour plot.

All the images on the Lagrange Points page on the website

were generated using custom written python scripts. The 3D

4

plots use the following formulas for gravitational potential

and rotational potential, which combine to create effective

potential:

Gravitational Potential:

𝑈𝐺𝑟𝑎𝑣𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 = −
(1 − 𝛼)

𝑟1

−
𝛼

𝑟2

Rotational Potential:

𝑈𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 = −
1

2
(𝑥2 + 𝑦2)

Effective Potential:

𝑈 = 𝑈𝐺𝑟𝑎𝑣𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 + 𝑈𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙

This is then plotted as a 3D surface so it is easy to visualise,

as masses will travel down effective potential much like

falling down a hill. It was trivial to convert this to a contour

plot using matplotlib’s inbuilt functions, which is how the

contour image on the website was generated.

3 The Website

 3.1 Python Integration

Upon considering how best to implement our models into

the website, we kept in mind our reasoning for choosing to

encode our project as a website. This meant that in order to

match the features of an app, integrating python code into

the website was essential. Therefore, our solution was to

utilise the PyScript web framework, which utilises the

Pyodide python distribution and web assembly to allow

python code run within html. PyScript allowed us to adapt

our models to return an image or animation that could be

displayed on the website when the code is run.

Unfortunately, this has a few limitations, the first of which

being the loading time upon running a model for Pyodide to

initiate, which is impossible to eliminate as it is a limitation

of the framework. This was deemed acceptable as past the

initial loading times, static models remain responsive. The

second limitation of PyScript is the framework’s inability to

display animations during their runtime. This resulted in

unacceptable delays whilst waiting for the entire animation

to complete. This meant that, out of necessity, for animated

tasks such as tasks 3 and 4, .mp4 files are instead displayed

to ensure responsiveness.

To ensure visual consistency, all video files were saved in-

code using the relevant function within matplotlib. The

writer ffmpeg was used, and all animations were recorded at

200 dpi at 30 frames per second using the H.264 video

encoder.

3.2 Other Libraries

Aside from PyScript, the website was written using a variety

of other libraries. The foremost library used was Bootstrap.

Bootstrap is an open-source CSS framework that is used

heavily throughout the website. This eliminated the need for

extensive CSS to be written and allowed for the website to

make use of its various features such as navigation bar, card,

carousel, button and drop-down menu templates for a more

mobile focused website. Another library used throughout

the website is Font Awesome. Font Awesome is a font and

icon pack that we predominantly used to make navigating

the website more convenient through the use of arrows on

buttons to switch between the various models. The final

library we used is MathJax, which was used to display

mathematics within text to explain how each task works

through the use of TeX.

 3.3 Design Considerations

During development of the website, we kept in mind a

couple of key considerations. The primary consideration was

that the website was intended to be compatible with mobile

devices. All pages are designed with a “card” design such

that all important information on the page is contained

within blocks in a central column. These blocks rescale

based on the display the website is being viewed on,

specifically how many pixels form the horizontal dimension

of the display. The navigation bar that persists at the top of

the display also changes when on mobile devices. When the

website is viewed on mobile, the navigation bar becomes a

drop-down menu with all of the same options presented to

the user. Furthermore, equations displayed on website scale

in size depending on whether or not the website is viewed

on mobile or desktop in order to ensure they fit within the

screen. Thus, all text on the website is deemed readable on

both mobile and desktop clients.

On all pages that display models, a carousel of images is

displayed to present to the user examples of the results of

the models. This was deemed necessary in small number of

cases where a device may be incapable of running the

models within the browser. Furthermore, all videos hosted

on the website are in the .mp4 file format to allow users to

pause or control the playback speed of the video. Finally,

both this report and a spreadsheet of the exoplanet data are

made easily accessible within the navigation bar. Each is

embedded within their own page, the paper using html

object tags and exoplanet data through the Microsoft live

embed service. They are both also easily downloadable.

References

French, A. (2023). Solar System Orbits. Retrieved from

https://www.bpho.org.uk/bpho/computational-challenge/

Exoplanet catalog. (2021). NASA. NASA. Retrieved from

<https://exoplanets.nasa.gov/discovery/exoplanet-catalog/>

https://pyscript.net/
https://www.ffmpeg.org/
https://getbootstrap.com/
https://fontawesome.com/
https://www.mathjax.org/

5

Planets, T. for. (n.d.). Textures for Planets. Retrieved from

<https://www.texturesforplanets.com/>

Solar textures. (n.d.). Solar System Scope. Retrieved from

<https://www.solarsystemscope.com/textures/>

Terrell, R. (n.d.). Wwwtyro.net. wwwtyro.net. Retrieved

from <https://wwwtyro.net/>

Cornish, N. J. (n.d.). Lagrange Points. Retrieved from

<https://map.gsfc.nasa.gov/ContentMedia/lagrange.pdf>

A Orbital Angle Function

The following function is used extensively throughout the

project in order to accurately determine the orbital angle of a

planet given an orbital time. The function f defines the

equation to be passed into the integration function (see

appendix C).

def get_angle(planet, t):

 ecc = float(planet[2]) # eccentricity

 p = float(planet[6]) # orbital time

 # defines interpolated function to integrate

 def f(x):

 return (2*math.pi/p)*(1+ecc*math.cos(x))**-2

 # generates coordinate arrays for eccentric orbits

 scale_factor = t/p

 subtract_amount = p * math.floor(scale_factor)

 scaled_t = t - subtract_amount

 N = (scaled_t/p)

 b = 2*math.pi*N

 result = ((integration(f, b, n)) * (p*((1-

ecc**2))**(3/2)*(1/(2*math.pi))))

 return result

B Animation

The following is an example animation system, from task 4.

It is split into 2 functions, animation_init and

animation_func. The former initialises the animation such

that the starting points are the first values in the coordinate

arrays. The latter is passed into matplotlibs animation

function to iterate through all values of i. The rest of the

code determines the largest orbital period and creates a list

of planets to be passed into matplotlib’s animation function.

def animation_init():

 # Creates the animation scene

 output = []

 for planet in planet_list:

 planet.point.set_data_3d([planet.xArray[0]],

[planet.yArray[0]], [planet.zArray[0]])

 output.append(planet.point)

 return output

def animate_func(i):

 # Called every frame (i) to update planet positions

 output = []

 for planet in planet_list:

 planet.point.set_data_3d([planet.xArray[i]],

[planet.yArray[i]], [planet.zArray[i]])

 output.append(planet.point)

 return output

Input planet system here

planet_system_name = "Outer Solar"

planet_system = Pd.system_list[planet_system_name]

planet_list = []

Get the largest orbital period

max_period = 0

for planet in planet_system:

 planet = planet_system[planet]

 if float(planet[6]) > max_period:

 max_period = float(planet[6])

Loop through planets and create a list of them

for count, planet in enumerate(planet_system):

 plan_class = Planet(planet_system[planet], count, ax,

max_period)

 planet_list.append(plan_class)

Start animation

anim = FuncAnimation(fig, animate_func,

init_func=animation_init, frames=len(planet_list[0].xArray),

interval=33.3, blit=False, repeat=False)

C Simpsons numeric integration

The following is the code used to perform Simpson’s

numerical integration method. It is used extensively

throughout the project to integrate the equation used in the

orbital angle function.

 # function, upper limit, number of subintervals

 def integration(f, b, n):

 h = (b) / n

 s = f(b)

 for i in range(1, n, 2):

 s += 4 * f(i * h)

 for i in range(2, n-1, 2):

 s += 2 * f(i * h)

 return s * h / 3

 # determines number of subintervals

 n = 200

